Identification of Ser38 as the site in cardiac sarcoplasmic reticulum Ca(2+)-ATPase that is phosphorylated by Ca2+/calmodulin-dependent protein kinase.

نویسندگان

  • T Toyofuku
  • K Curotto Kurzydlowski
  • N Narayanan
  • D H MacLennan
چکیده

In previous studies (Xu, A., Hawkins, C., and Narayanan, N. (1993) J. Biol. Chem. 268, 8394-8397), the Ca(2+)-ATPase of cardiac muscle sarcoplasmic reticulum (SERCA2) was shown to be phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaM kinase) on a serine residue, likely to be either Ser38, Ser167, or Ser531. SERCA2 and SERCA2 mutants S38A, S167A, and S531A were expressed in HEK-293 cells and tested for phosphorylation with CaM kinase. Mutant S38A was not phosphorylated, while mutants S167A and S531A were phosphorylated, suggesting that Ser38 is the site of CaM kinase phosphorylation in SERCA2. This conclusion was supported by the observation that phosphorylation of SERCA2 and mutants S167A and S531A by CaM kinase increased the Vmax for Ca2+ transport, while the Vmax for Ca2+ transport by mutant S38A was unaffected by exposure to a phosphorylation reaction mix. SERCA1, containing a potential CaM kinase phosphorylation site at Ser167 and two SERCA1 mutants, K35R plus H38S and T532S, in which potential CaM kinase sites were created, were not phosphorylated by CaM kinase, and Vmax for Ca2+ transport was unaffected by exposure to a phosphorylation reaction mix. Thus phosphorylation of Ser38 in SERCA2 results in a unique activation of Vmax for Ca2+ transport, providing a potential regulatory mechanism for Ca2+ removal from cardiac and other tissues in which SERCA2 is expressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase.

Regulation of calcium transport by sarcoplasmic reticulum provides increased cardiac contractility in response to beta-adrenergic stimulation. This is due to phosphorylation of phospholamban by cAMP-dependent protein kinase or by calcium/calmodulin-dependent protein kinase, which activates the calcium pump (Ca2+-ATPase). Recently, direct phosphorylation of Ca2+-ATPase by calcium/calmodulin-depe...

متن کامل

Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure.

Abnormal release of Ca from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction and arrhythmogenesis in heart failure (HF). We previously demonstrated decreased Ca transient amplitude and SR Ca load associated with increased Na/Ca exchanger expression and enhanced diastolic SR Ca leak in an arrhythmogenic rabbit model of nonischemic HF...

متن کامل

Mechanism of the Stimulation of Ca’+-dependent ATPase of Cardiac Sarcoplasmic Reticulum by Adenosine 3’5%Monophosphate-dependent Protein Kinase

The effects of a CAMP-dependent protein kinase on the elementary steps of Ca’+-dependent ATPase of canine cardiac sarcoplasmic reticulum were examined in order to define the previously proposed regulatory role of the 22,000-dalton protein phospholamban. Cardiac sarcoplasmic reticulum, preincubated with CAMP, CAMP-dependent protein kinase, and unlabeled ATP in the presence and absence of MgC12, ...

متن کامل

Translation of Ser16 and Thr17 phosphorylation of phospholamban into Ca 2+-pump stimulation.

Stimulation of cardiac sarcoplasmic reticulum Ca 2+-pump activity is achieved by phosphorylation of the oligomeric protein phospholamban at either Ser16 or Thr17. The altered mobility of phosphorylated forms of pentameric phospholamban has been utilized to demonstrate that the mechanisms of phosphorylation of the two sites differ. Phosphorylation of Ser16 by the AMP-dependent protein kinase pro...

متن کامل

Cardiac sarcoplasmic-reticulum calmodulin-binding proteins. Modulation of calmodulin binding to phospholamban by phosphorylation.

The gel-overlay technique with 125I-labelled calmodulin allowed the detection of several calmodulin-binding proteins of Mr 280 000, 150 000, 97 000, 56 000, 35 000 and 24 000 in canine cardiac sarcoplasmic reticulum. Only two calmodulin-binding proteins could be identified unambiguously. Among them, the 97 000-Mr protein that undergoes phosphorylation in the presence of Ca2+ and calmodulin, is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 42  شماره 

صفحات  -

تاریخ انتشار 1994